Metamath Proof Explorer


Theorem br1cossinidres

Description: B and C are cosets by an intersection with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion br1cossinidres
|- ( ( B e. V /\ C e. W ) -> ( B ,~ ( R i^i ( _I |` A ) ) C <-> E. u e. A ( ( u = B /\ u R B ) /\ ( u = C /\ u R C ) ) ) )

Proof

Step Hyp Ref Expression
1 br1cossinres
 |-  ( ( B e. V /\ C e. W ) -> ( B ,~ ( R i^i ( _I |` A ) ) C <-> E. u e. A ( ( u _I B /\ u R B ) /\ ( u _I C /\ u R C ) ) ) )
2 ideq2
 |-  ( u e. _V -> ( u _I B <-> u = B ) )
3 2 elv
 |-  ( u _I B <-> u = B )
4 3 anbi1i
 |-  ( ( u _I B /\ u R B ) <-> ( u = B /\ u R B ) )
5 ideq2
 |-  ( u e. _V -> ( u _I C <-> u = C ) )
6 5 elv
 |-  ( u _I C <-> u = C )
7 6 anbi1i
 |-  ( ( u _I C /\ u R C ) <-> ( u = C /\ u R C ) )
8 4 7 anbi12i
 |-  ( ( ( u _I B /\ u R B ) /\ ( u _I C /\ u R C ) ) <-> ( ( u = B /\ u R B ) /\ ( u = C /\ u R C ) ) )
9 8 rexbii
 |-  ( E. u e. A ( ( u _I B /\ u R B ) /\ ( u _I C /\ u R C ) ) <-> E. u e. A ( ( u = B /\ u R B ) /\ ( u = C /\ u R C ) ) )
10 1 9 syl6bb
 |-  ( ( B e. V /\ C e. W ) -> ( B ,~ ( R i^i ( _I |` A ) ) C <-> E. u e. A ( ( u = B /\ u R B ) /\ ( u = C /\ u R C ) ) ) )