Step |
Hyp |
Ref |
Expression |
1 |
|
br1cossinres |
|- ( ( B e. V /\ C e. W ) -> ( B ,~ ( R i^i ( _I |` A ) ) C <-> E. u e. A ( ( u _I B /\ u R B ) /\ ( u _I C /\ u R C ) ) ) ) |
2 |
|
ideq2 |
|- ( u e. _V -> ( u _I B <-> u = B ) ) |
3 |
2
|
elv |
|- ( u _I B <-> u = B ) |
4 |
3
|
anbi1i |
|- ( ( u _I B /\ u R B ) <-> ( u = B /\ u R B ) ) |
5 |
|
ideq2 |
|- ( u e. _V -> ( u _I C <-> u = C ) ) |
6 |
5
|
elv |
|- ( u _I C <-> u = C ) |
7 |
6
|
anbi1i |
|- ( ( u _I C /\ u R C ) <-> ( u = C /\ u R C ) ) |
8 |
4 7
|
anbi12i |
|- ( ( ( u _I B /\ u R B ) /\ ( u _I C /\ u R C ) ) <-> ( ( u = B /\ u R B ) /\ ( u = C /\ u R C ) ) ) |
9 |
8
|
rexbii |
|- ( E. u e. A ( ( u _I B /\ u R B ) /\ ( u _I C /\ u R C ) ) <-> E. u e. A ( ( u = B /\ u R B ) /\ ( u = C /\ u R C ) ) ) |
10 |
1 9
|
bitrdi |
|- ( ( B e. V /\ C e. W ) -> ( B ,~ ( R i^i ( _I |` A ) ) C <-> E. u e. A ( ( u = B /\ u R B ) /\ ( u = C /\ u R C ) ) ) ) |