Step |
Hyp |
Ref |
Expression |
1 |
|
resco |
|- ( ( `' ( 2nd |` ( _V X. _V ) ) o. S ) |` A ) = ( `' ( 2nd |` ( _V X. _V ) ) o. ( S |` A ) ) |
2 |
1
|
ineq2i |
|- ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( ( `' ( 2nd |` ( _V X. _V ) ) o. S ) |` A ) ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( S |` A ) ) ) |
3 |
|
df-xrn |
|- ( R |X. S ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. S ) ) |
4 |
3
|
reseq1i |
|- ( ( R |X. S ) |` A ) = ( ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. S ) ) |` A ) |
5 |
|
inres |
|- ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( ( `' ( 2nd |` ( _V X. _V ) ) o. S ) |` A ) ) = ( ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. S ) ) |` A ) |
6 |
4 5
|
eqtr4i |
|- ( ( R |X. S ) |` A ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( ( `' ( 2nd |` ( _V X. _V ) ) o. S ) |` A ) ) |
7 |
|
df-xrn |
|- ( R |X. ( S |` A ) ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( S |` A ) ) ) |
8 |
2 6 7
|
3eqtr4i |
|- ( ( R |X. S ) |` A ) = ( R |X. ( S |` A ) ) |