| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resco |  |-  ( ( `' ( 2nd |` ( _V X. _V ) ) o. S ) |` A ) = ( `' ( 2nd |` ( _V X. _V ) ) o. ( S |` A ) ) | 
						
							| 2 | 1 | ineq2i |  |-  ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( ( `' ( 2nd |` ( _V X. _V ) ) o. S ) |` A ) ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( S |` A ) ) ) | 
						
							| 3 |  | df-xrn |  |-  ( R |X. S ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. S ) ) | 
						
							| 4 | 3 | reseq1i |  |-  ( ( R |X. S ) |` A ) = ( ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. S ) ) |` A ) | 
						
							| 5 |  | inres |  |-  ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( ( `' ( 2nd |` ( _V X. _V ) ) o. S ) |` A ) ) = ( ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. S ) ) |` A ) | 
						
							| 6 | 4 5 | eqtr4i |  |-  ( ( R |X. S ) |` A ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( ( `' ( 2nd |` ( _V X. _V ) ) o. S ) |` A ) ) | 
						
							| 7 |  | df-xrn |  |-  ( R |X. ( S |` A ) ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( S |` A ) ) ) | 
						
							| 8 | 2 6 7 | 3eqtr4i |  |-  ( ( R |X. S ) |` A ) = ( R |X. ( S |` A ) ) |