Step |
Hyp |
Ref |
Expression |
1 |
|
resco |
|- ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) |` A ) = ( `' ( 1st |` ( _V X. _V ) ) o. ( R |` A ) ) |
2 |
|
resco |
|- ( ( `' ( 2nd |` ( _V X. _V ) ) o. S ) |` A ) = ( `' ( 2nd |` ( _V X. _V ) ) o. ( S |` A ) ) |
3 |
1 2
|
ineq12i |
|- ( ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) |` A ) i^i ( ( `' ( 2nd |` ( _V X. _V ) ) o. S ) |` A ) ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. ( R |` A ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( S |` A ) ) ) |
4 |
|
df-xrn |
|- ( R |X. S ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. S ) ) |
5 |
4
|
reseq1i |
|- ( ( R |X. S ) |` A ) = ( ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. S ) ) |` A ) |
6 |
|
resindir |
|- ( ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. S ) ) |` A ) = ( ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) |` A ) i^i ( ( `' ( 2nd |` ( _V X. _V ) ) o. S ) |` A ) ) |
7 |
5 6
|
eqtri |
|- ( ( R |X. S ) |` A ) = ( ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) |` A ) i^i ( ( `' ( 2nd |` ( _V X. _V ) ) o. S ) |` A ) ) |
8 |
|
df-xrn |
|- ( ( R |` A ) |X. ( S |` A ) ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. ( R |` A ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( S |` A ) ) ) |
9 |
3 7 8
|
3eqtr4i |
|- ( ( R |X. S ) |` A ) = ( ( R |` A ) |X. ( S |` A ) ) |