| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resco |  |-  ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) |` A ) = ( `' ( 1st |` ( _V X. _V ) ) o. ( R |` A ) ) | 
						
							| 2 |  | resco |  |-  ( ( `' ( 2nd |` ( _V X. _V ) ) o. S ) |` A ) = ( `' ( 2nd |` ( _V X. _V ) ) o. ( S |` A ) ) | 
						
							| 3 | 1 2 | ineq12i |  |-  ( ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) |` A ) i^i ( ( `' ( 2nd |` ( _V X. _V ) ) o. S ) |` A ) ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. ( R |` A ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( S |` A ) ) ) | 
						
							| 4 |  | df-xrn |  |-  ( R |X. S ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. S ) ) | 
						
							| 5 | 4 | reseq1i |  |-  ( ( R |X. S ) |` A ) = ( ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. S ) ) |` A ) | 
						
							| 6 |  | resindir |  |-  ( ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. S ) ) |` A ) = ( ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) |` A ) i^i ( ( `' ( 2nd |` ( _V X. _V ) ) o. S ) |` A ) ) | 
						
							| 7 | 5 6 | eqtri |  |-  ( ( R |X. S ) |` A ) = ( ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) |` A ) i^i ( ( `' ( 2nd |` ( _V X. _V ) ) o. S ) |` A ) ) | 
						
							| 8 |  | df-xrn |  |-  ( ( R |` A ) |X. ( S |` A ) ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. ( R |` A ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( S |` A ) ) ) | 
						
							| 9 | 3 7 8 | 3eqtr4i |  |-  ( ( R |X. S ) |` A ) = ( ( R |` A ) |X. ( S |` A ) ) |