Metamath Proof Explorer


Theorem brressn

Description: Binary relation on a restriction to a singleton. (Contributed by Peter Mazsa, 11-Jun-2024)

Ref Expression
Assertion brressn
|- ( ( B e. V /\ C e. W ) -> ( B ( R |` { A } ) C <-> ( B = A /\ B R C ) ) )

Proof

Step Hyp Ref Expression
1 brres
 |-  ( C e. W -> ( B ( R |` { A } ) C <-> ( B e. { A } /\ B R C ) ) )
2 1 adantl
 |-  ( ( B e. V /\ C e. W ) -> ( B ( R |` { A } ) C <-> ( B e. { A } /\ B R C ) ) )
3 elsng
 |-  ( B e. V -> ( B e. { A } <-> B = A ) )
4 3 adantr
 |-  ( ( B e. V /\ C e. W ) -> ( B e. { A } <-> B = A ) )
5 4 anbi1d
 |-  ( ( B e. V /\ C e. W ) -> ( ( B e. { A } /\ B R C ) <-> ( B = A /\ B R C ) ) )
6 2 5 bitrd
 |-  ( ( B e. V /\ C e. W ) -> ( B ( R |` { A } ) C <-> ( B = A /\ B R C ) ) )