Description: Binary relation on a restriction to a singleton. (Contributed by Peter Mazsa, 11-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | brressn | |- ( ( B e. V /\ C e. W ) -> ( B ( R |` { A } ) C <-> ( B = A /\ B R C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brres | |- ( C e. W -> ( B ( R |` { A } ) C <-> ( B e. { A } /\ B R C ) ) ) |
|
2 | 1 | adantl | |- ( ( B e. V /\ C e. W ) -> ( B ( R |` { A } ) C <-> ( B e. { A } /\ B R C ) ) ) |
3 | elsng | |- ( B e. V -> ( B e. { A } <-> B = A ) ) |
|
4 | 3 | adantr | |- ( ( B e. V /\ C e. W ) -> ( B e. { A } <-> B = A ) ) |
5 | 4 | anbi1d | |- ( ( B e. V /\ C e. W ) -> ( ( B e. { A } /\ B R C ) <-> ( B = A /\ B R C ) ) ) |
6 | 2 5 | bitrd | |- ( ( B e. V /\ C e. W ) -> ( B ( R |` { A } ) C <-> ( B = A /\ B R C ) ) ) |