Step |
Hyp |
Ref |
Expression |
1 |
|
dfrefrel2 |
|- ( RefRel R <-> ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R ) ) |
2 |
|
dfsymrel2 |
|- ( SymRel R <-> ( `' R C_ R /\ Rel R ) ) |
3 |
1 2
|
anbi12i |
|- ( ( RefRel R /\ SymRel R ) <-> ( ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R ) /\ ( `' R C_ R /\ Rel R ) ) ) |
4 |
|
anandi3r |
|- ( ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R /\ `' R C_ R ) <-> ( ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R ) /\ ( `' R C_ R /\ Rel R ) ) ) |
5 |
|
3anan32 |
|- ( ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R /\ `' R C_ R ) <-> ( ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ `' R C_ R ) /\ Rel R ) ) |
6 |
3 4 5
|
3bitr2i |
|- ( ( RefRel R /\ SymRel R ) <-> ( ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ `' R C_ R ) /\ Rel R ) ) |
7 |
|
symrefref2 |
|- ( `' R C_ R -> ( ( _I i^i ( dom R X. ran R ) ) C_ R <-> ( _I |` dom R ) C_ R ) ) |
8 |
7
|
pm5.32ri |
|- ( ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ `' R C_ R ) <-> ( ( _I |` dom R ) C_ R /\ `' R C_ R ) ) |
9 |
8
|
anbi1i |
|- ( ( ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ `' R C_ R ) /\ Rel R ) <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ Rel R ) ) |
10 |
6 9
|
bitri |
|- ( ( RefRel R /\ SymRel R ) <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ Rel R ) ) |