Description: For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate. (Contributed by Peter Mazsa, 24-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eleqvrelsrel | |- ( R e. V -> ( R e. EqvRels <-> EqvRel R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrelsrel | |- ( R e. V -> ( R e. Rels <-> Rel R ) ) |
|
2 | 1 | anbi2d | |- ( R e. V -> ( ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) /\ R e. Rels ) <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) /\ Rel R ) ) ) |
3 | eleqvrels2 | |- ( R e. EqvRels <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) /\ R e. Rels ) ) |
|
4 | dfeqvrel2 | |- ( EqvRel R <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) /\ Rel R ) ) |
|
5 | 2 3 4 | 3bitr4g | |- ( R e. V -> ( R e. EqvRels <-> EqvRel R ) ) |