Metamath Proof Explorer


Theorem eleqvrelsrel

Description: For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate. (Contributed by Peter Mazsa, 24-Aug-2021)

Ref Expression
Assertion eleqvrelsrel
|- ( R e. V -> ( R e. EqvRels <-> EqvRel R ) )

Proof

Step Hyp Ref Expression
1 elrelsrel
 |-  ( R e. V -> ( R e. Rels <-> Rel R ) )
2 1 anbi2d
 |-  ( R e. V -> ( ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) /\ R e. Rels ) <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) /\ Rel R ) ) )
3 eleqvrels2
 |-  ( R e. EqvRels <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) /\ R e. Rels ) )
4 dfeqvrel2
 |-  ( EqvRel R <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) /\ Rel R ) )
5 2 3 4 3bitr4g
 |-  ( R e. V -> ( R e. EqvRels <-> EqvRel R ) )