Metamath Proof Explorer


Theorem eleqvrelsrel

Description: For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate. (Contributed by Peter Mazsa, 24-Aug-2021)

Ref Expression
Assertion eleqvrelsrel R V R EqvRels EqvRel R

Proof

Step Hyp Ref Expression
1 elrelsrel R V R Rels Rel R
2 1 anbi2d R V I dom R R R -1 R R R R R Rels I dom R R R -1 R R R R Rel R
3 eleqvrels2 R EqvRels I dom R R R -1 R R R R R Rels
4 dfeqvrel2 EqvRel R I dom R R R -1 R R R R Rel R
5 2 3 4 3bitr4g R V R EqvRels EqvRel R