Metamath Proof Explorer


Theorem eleqvrels2

Description: Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021)

Ref Expression
Assertion eleqvrels2 R EqvRels I dom R R R -1 R R R R R Rels

Proof

Step Hyp Ref Expression
1 dfeqvrels2 EqvRels = r Rels | I dom r r r -1 r r r r
2 dmeq r = R dom r = dom R
3 2 reseq2d r = R I dom r = I dom R
4 id r = R r = R
5 3 4 sseq12d r = R I dom r r I dom R R
6 cnveq r = R r -1 = R -1
7 6 4 sseq12d r = R r -1 r R -1 R
8 coideq r = R r r = R R
9 8 4 sseq12d r = R r r r R R R
10 5 7 9 3anbi123d r = R I dom r r r -1 r r r r I dom R R R -1 R R R R
11 1 10 rabeqel R EqvRels I dom R R R -1 R R R R R Rels