Step |
Hyp |
Ref |
Expression |
1 |
|
dfeqvrels2 |
⊢ EqvRels = { 𝑟 ∈ Rels ∣ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } |
2 |
|
dmeq |
⊢ ( 𝑟 = 𝑅 → dom 𝑟 = dom 𝑅 ) |
3 |
2
|
reseq2d |
⊢ ( 𝑟 = 𝑅 → ( I ↾ dom 𝑟 ) = ( I ↾ dom 𝑅 ) ) |
4 |
|
id |
⊢ ( 𝑟 = 𝑅 → 𝑟 = 𝑅 ) |
5 |
3 4
|
sseq12d |
⊢ ( 𝑟 = 𝑅 → ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ↔ ( I ↾ dom 𝑅 ) ⊆ 𝑅 ) ) |
6 |
|
cnveq |
⊢ ( 𝑟 = 𝑅 → ◡ 𝑟 = ◡ 𝑅 ) |
7 |
6 4
|
sseq12d |
⊢ ( 𝑟 = 𝑅 → ( ◡ 𝑟 ⊆ 𝑟 ↔ ◡ 𝑅 ⊆ 𝑅 ) ) |
8 |
|
coideq |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ∘ 𝑟 ) = ( 𝑅 ∘ 𝑅 ) ) |
9 |
8 4
|
sseq12d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ↔ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) ) |
10 |
5 7 9
|
3anbi123d |
⊢ ( 𝑟 = 𝑅 → ( ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ↔ ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ∧ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) ) ) |
11 |
1 10
|
rabeqel |
⊢ ( 𝑅 ∈ EqvRels ↔ ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ∧ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) ∧ 𝑅 ∈ Rels ) ) |