Metamath Proof Explorer


Theorem eleqvrels2

Description: Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021)

Ref Expression
Assertion eleqvrels2 ( 𝑅 ∈ EqvRels ↔ ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 𝑅𝑅 ∧ ( 𝑅𝑅 ) ⊆ 𝑅 ) ∧ 𝑅 ∈ Rels ) )

Proof

Step Hyp Ref Expression
1 dfeqvrels2 EqvRels = { 𝑟 ∈ Rels ∣ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 𝑟𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) }
2 dmeq ( 𝑟 = 𝑅 → dom 𝑟 = dom 𝑅 )
3 2 reseq2d ( 𝑟 = 𝑅 → ( I ↾ dom 𝑟 ) = ( I ↾ dom 𝑅 ) )
4 id ( 𝑟 = 𝑅𝑟 = 𝑅 )
5 3 4 sseq12d ( 𝑟 = 𝑅 → ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ↔ ( I ↾ dom 𝑅 ) ⊆ 𝑅 ) )
6 cnveq ( 𝑟 = 𝑅 𝑟 = 𝑅 )
7 6 4 sseq12d ( 𝑟 = 𝑅 → ( 𝑟𝑟 𝑅𝑅 ) )
8 coideq ( 𝑟 = 𝑅 → ( 𝑟𝑟 ) = ( 𝑅𝑅 ) )
9 8 4 sseq12d ( 𝑟 = 𝑅 → ( ( 𝑟𝑟 ) ⊆ 𝑟 ↔ ( 𝑅𝑅 ) ⊆ 𝑅 ) )
10 5 7 9 3anbi123d ( 𝑟 = 𝑅 → ( ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 𝑟𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) ↔ ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 𝑅𝑅 ∧ ( 𝑅𝑅 ) ⊆ 𝑅 ) ) )
11 1 10 rabeqel ( 𝑅 ∈ EqvRels ↔ ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 𝑅𝑅 ∧ ( 𝑅𝑅 ) ⊆ 𝑅 ) ∧ 𝑅 ∈ Rels ) )