Step |
Hyp |
Ref |
Expression |
1 |
|
dfeqvrels3 |
⊢ EqvRels = { 𝑟 ∈ Rels ∣ ( ∀ 𝑥 ∈ dom 𝑟 𝑥 𝑟 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑟 𝑦 → 𝑦 𝑟 𝑥 ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) } |
2 |
|
dmeq |
⊢ ( 𝑟 = 𝑅 → dom 𝑟 = dom 𝑅 ) |
3 |
|
breq |
⊢ ( 𝑟 = 𝑅 → ( 𝑥 𝑟 𝑥 ↔ 𝑥 𝑅 𝑥 ) ) |
4 |
2 3
|
raleqbidv |
⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑥 ∈ dom 𝑟 𝑥 𝑟 𝑥 ↔ ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ) ) |
5 |
|
breq |
⊢ ( 𝑟 = 𝑅 → ( 𝑥 𝑟 𝑦 ↔ 𝑥 𝑅 𝑦 ) ) |
6 |
|
breq |
⊢ ( 𝑟 = 𝑅 → ( 𝑦 𝑟 𝑥 ↔ 𝑦 𝑅 𝑥 ) ) |
7 |
5 6
|
imbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑥 𝑟 𝑦 → 𝑦 𝑟 𝑥 ) ↔ ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |
8 |
7
|
2albidv |
⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑟 𝑦 → 𝑦 𝑟 𝑥 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |
9 |
|
breq |
⊢ ( 𝑟 = 𝑅 → ( 𝑦 𝑟 𝑧 ↔ 𝑦 𝑅 𝑧 ) ) |
10 |
5 9
|
anbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) ↔ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) |
11 |
|
breq |
⊢ ( 𝑟 = 𝑅 → ( 𝑥 𝑟 𝑧 ↔ 𝑥 𝑅 𝑧 ) ) |
12 |
10 11
|
imbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ↔ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
13 |
12
|
2albidv |
⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
14 |
13
|
albidv |
⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
15 |
4 8 14
|
3anbi123d |
⊢ ( 𝑟 = 𝑅 → ( ( ∀ 𝑥 ∈ dom 𝑟 𝑥 𝑟 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑟 𝑦 → 𝑦 𝑟 𝑥 ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ↔ ( ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ) |
16 |
1 15
|
rabeqel |
⊢ ( 𝑅 ∈ EqvRels ↔ ( ( ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ∧ 𝑅 ∈ Rels ) ) |