Metamath Proof Explorer


Theorem refsymrels2

Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 ) can use the restricted version for their reflexive part (see below), not just the (I i^i ( dom r X. ran r ) ) C r version of dfrefrels2 , cf. the comment of dfrefrels2 . (Contributed by Peter Mazsa, 20-Jul-2019)

Ref Expression
Assertion refsymrels2 RefRels SymRels = r Rels | I dom r r r -1 r

Proof

Step Hyp Ref Expression
1 dfrefrels2 RefRels = r Rels | I dom r × ran r r
2 dfsymrels2 SymRels = r Rels | r -1 r
3 1 2 ineq12i RefRels SymRels = r Rels | I dom r × ran r r r Rels | r -1 r
4 inrab r Rels | I dom r × ran r r r Rels | r -1 r = r Rels | I dom r × ran r r r -1 r
5 symrefref2 r -1 r I dom r × ran r r I dom r r
6 5 pm5.32ri I dom r × ran r r r -1 r I dom r r r -1 r
7 6 rabbii r Rels | I dom r × ran r r r -1 r = r Rels | I dom r r r -1 r
8 3 4 7 3eqtri RefRels SymRels = r Rels | I dom r r r -1 r