Metamath Proof Explorer


Theorem refsymrels3

Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 ) can use the A. x e. dom r x r x version for their reflexive part, not just the A. x e. dom r A. y e. ran r ( x = y -> x r y ) version of dfrefrels3 , cf. the comment of dfrefrel3 . (Contributed by Peter Mazsa, 22-Jul-2019) (Proof modification is discouraged.)

Ref Expression
Assertion refsymrels3 RefRels SymRels = r Rels | x dom r x r x x y x r y y r x

Proof

Step Hyp Ref Expression
1 refsymrels2 RefRels SymRels = r Rels | I dom r r r -1 r
2 idrefALT I dom r r x dom r x r x
3 cnvsym r -1 r x y x r y y r x
4 2 3 anbi12i I dom r r r -1 r x dom r x r x x y x r y y r x
5 1 4 rabbieq RefRels SymRels = r Rels | x dom r x r x x y x r y y r x