Metamath Proof Explorer


Theorem dfeqvrels3

Description: Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019)

Ref Expression
Assertion dfeqvrels3 EqvRels = r Rels | x dom r x r x x y x r y y r x x y z x r y y r z x r z

Proof

Step Hyp Ref Expression
1 dfeqvrels2 EqvRels = r Rels | I dom r r r -1 r r r r
2 idrefALT I dom r r x dom r x r x
3 cnvsym r -1 r x y x r y y r x
4 cotr r r r x y z x r y y r z x r z
5 2 3 4 3anbi123i I dom r r r -1 r r r r x dom r x r x x y x r y y r x x y z x r y y r z x r z
6 1 5 rabbieq EqvRels = r Rels | x dom r x r x x y x r y y r x x y z x r y y r z x r z