Metamath Proof Explorer


Theorem ssrabi

Description: Inference of restricted abstraction subclass from implication. (Contributed by Peter Mazsa, 26-Oct-2022)

Ref Expression
Hypothesis ssrabi.1
|- ( ph -> ps )
Assertion ssrabi
|- { x e. A | ph } C_ { x e. A | ps }

Proof

Step Hyp Ref Expression
1 ssrabi.1
 |-  ( ph -> ps )
2 1 a1i
 |-  ( x e. A -> ( ph -> ps ) )
3 2 ss2rabi
 |-  { x e. A | ph } C_ { x e. A | ps }