Metamath Proof Explorer


Theorem refrelsredund2

Description: The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 ) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022)

Ref Expression
Assertion refrelsredund2
|- { r e. Rels | ( _I |` dom r ) C_ r } Redund <. RefRels , EqvRels >.

Proof

Step Hyp Ref Expression
1 refrelsredund4
 |-  { r e. Rels | ( _I |` dom r ) C_ r } Redund <. RefRels , ( RefRels i^i SymRels ) >.
2 df-eqvrels
 |-  EqvRels = ( ( RefRels i^i SymRels ) i^i TrRels )
3 inss1
 |-  ( ( RefRels i^i SymRels ) i^i TrRels ) C_ ( RefRels i^i SymRels )
4 2 3 eqsstri
 |-  EqvRels C_ ( RefRels i^i SymRels )
5 4 redundss3
 |-  ( { r e. Rels | ( _I |` dom r ) C_ r } Redund <. RefRels , ( RefRels i^i SymRels ) >. -> { r e. Rels | ( _I |` dom r ) C_ r } Redund <. RefRels , EqvRels >. )
6 1 5 ax-mp
 |-  { r e. Rels | ( _I |` dom r ) C_ r } Redund <. RefRels , EqvRels >.