Step |
Hyp |
Ref |
Expression |
1 |
|
refrelsredund4 |
|- { r e. Rels | ( _I |` dom r ) C_ r } Redund <. RefRels , ( RefRels i^i SymRels ) >. |
2 |
|
df-eqvrels |
|- EqvRels = ( ( RefRels i^i SymRels ) i^i TrRels ) |
3 |
|
inss1 |
|- ( ( RefRels i^i SymRels ) i^i TrRels ) C_ ( RefRels i^i SymRels ) |
4 |
2 3
|
eqsstri |
|- EqvRels C_ ( RefRels i^i SymRels ) |
5 |
4
|
redundss3 |
|- ( { r e. Rels | ( _I |` dom r ) C_ r } Redund <. RefRels , ( RefRels i^i SymRels ) >. -> { r e. Rels | ( _I |` dom r ) C_ r } Redund <. RefRels , EqvRels >. ) |
6 |
1 5
|
ax-mp |
|- { r e. Rels | ( _I |` dom r ) C_ r } Redund <. RefRels , EqvRels >. |