Metamath Proof Explorer


Theorem refrelsredund2

Description: The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 ) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022)

Ref Expression
Assertion refrelsredund2 { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } Redund ⟨ RefRels , EqvRels ⟩

Proof

Step Hyp Ref Expression
1 refrelsredund4 { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } Redund ⟨ RefRels , ( RefRels ∩ SymRels ) ⟩
2 df-eqvrels EqvRels = ( ( RefRels ∩ SymRels ) ∩ TrRels )
3 inss1 ( ( RefRels ∩ SymRels ) ∩ TrRels ) ⊆ ( RefRels ∩ SymRels )
4 2 3 eqsstri EqvRels ⊆ ( RefRels ∩ SymRels )
5 4 redundss3 ( { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } Redund ⟨ RefRels , ( RefRels ∩ SymRels ) ⟩ → { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } Redund ⟨ RefRels , EqvRels ⟩ )
6 1 5 ax-mp { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } Redund ⟨ RefRels , EqvRels ⟩