Step |
Hyp |
Ref |
Expression |
1 |
|
refrelsredund4 |
⊢ { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } Redund 〈 RefRels , ( RefRels ∩ SymRels ) 〉 |
2 |
|
df-eqvrels |
⊢ EqvRels = ( ( RefRels ∩ SymRels ) ∩ TrRels ) |
3 |
|
inss1 |
⊢ ( ( RefRels ∩ SymRels ) ∩ TrRels ) ⊆ ( RefRels ∩ SymRels ) |
4 |
2 3
|
eqsstri |
⊢ EqvRels ⊆ ( RefRels ∩ SymRels ) |
5 |
4
|
redundss3 |
⊢ ( { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } Redund 〈 RefRels , ( RefRels ∩ SymRels ) 〉 → { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } Redund 〈 RefRels , EqvRels 〉 ) |
6 |
1 5
|
ax-mp |
⊢ { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } Redund 〈 RefRels , EqvRels 〉 |