Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bibi2i.1 | |- ( ph <-> ps ) |
|
| Assertion | bibi1i | |- ( ( ph <-> ch ) <-> ( ps <-> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bibi2i.1 | |- ( ph <-> ps ) |
|
| 2 | bicom | |- ( ( ph <-> ch ) <-> ( ch <-> ph ) ) |
|
| 3 | 1 | bibi2i | |- ( ( ch <-> ph ) <-> ( ch <-> ps ) ) |
| 4 | bicom | |- ( ( ch <-> ps ) <-> ( ps <-> ch ) ) |
|
| 5 | 2 3 4 | 3bitri | |- ( ( ph <-> ch ) <-> ( ps <-> ch ) ) |