| Step | Hyp | Ref | Expression | 
						
							| 1 |  | redundpim3.1 | ⊢ ( 𝜃  →  𝜒 ) | 
						
							| 2 |  | anbi1 | ⊢ ( ( ( 𝜑  ∧  𝜒 )  ↔  ( 𝜓  ∧  𝜒 ) )  →  ( ( ( 𝜑  ∧  𝜒 )  ∧  𝜃 )  ↔  ( ( 𝜓  ∧  𝜒 )  ∧  𝜃 ) ) ) | 
						
							| 3 | 1 | pm4.71ri | ⊢ ( 𝜃  ↔  ( 𝜒  ∧  𝜃 ) ) | 
						
							| 4 | 3 | bianass | ⊢ ( ( 𝜑  ∧  𝜃 )  ↔  ( ( 𝜑  ∧  𝜒 )  ∧  𝜃 ) ) | 
						
							| 5 | 3 | bianass | ⊢ ( ( 𝜓  ∧  𝜃 )  ↔  ( ( 𝜓  ∧  𝜒 )  ∧  𝜃 ) ) | 
						
							| 6 | 2 4 5 | 3bitr4g | ⊢ ( ( ( 𝜑  ∧  𝜒 )  ↔  ( 𝜓  ∧  𝜒 ) )  →  ( ( 𝜑  ∧  𝜃 )  ↔  ( 𝜓  ∧  𝜃 ) ) ) | 
						
							| 7 | 6 | anim2i | ⊢ ( ( ( 𝜑  →  𝜓 )  ∧  ( ( 𝜑  ∧  𝜒 )  ↔  ( 𝜓  ∧  𝜒 ) ) )  →  ( ( 𝜑  →  𝜓 )  ∧  ( ( 𝜑  ∧  𝜃 )  ↔  ( 𝜓  ∧  𝜃 ) ) ) ) | 
						
							| 8 |  | df-redundp | ⊢ (  redund  ( 𝜑 ,  𝜓 ,  𝜒 )  ↔  ( ( 𝜑  →  𝜓 )  ∧  ( ( 𝜑  ∧  𝜒 )  ↔  ( 𝜓  ∧  𝜒 ) ) ) ) | 
						
							| 9 |  | df-redundp | ⊢ (  redund  ( 𝜑 ,  𝜓 ,  𝜃 )  ↔  ( ( 𝜑  →  𝜓 )  ∧  ( ( 𝜑  ∧  𝜃 )  ↔  ( 𝜓  ∧  𝜃 ) ) ) ) | 
						
							| 10 | 7 8 9 | 3imtr4i | ⊢ (  redund  ( 𝜑 ,  𝜓 ,  𝜒 )  →   redund  ( 𝜑 ,  𝜓 ,  𝜃 ) ) |