Metamath Proof Explorer


Theorem redundpim3

Description: Implication of redundancy of proposition. (Contributed by Peter Mazsa, 26-Oct-2022)

Ref Expression
Hypothesis redundpim3.1 ( 𝜃𝜒 )
Assertion redundpim3 ( redund ( 𝜑 , 𝜓 , 𝜒 ) → redund ( 𝜑 , 𝜓 , 𝜃 ) )

Proof

Step Hyp Ref Expression
1 redundpim3.1 ( 𝜃𝜒 )
2 anbi1 ( ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜒 ) ) → ( ( ( 𝜑𝜒 ) ∧ 𝜃 ) ↔ ( ( 𝜓𝜒 ) ∧ 𝜃 ) ) )
3 1 pm4.71ri ( 𝜃 ↔ ( 𝜒𝜃 ) )
4 3 bianass ( ( 𝜑𝜃 ) ↔ ( ( 𝜑𝜒 ) ∧ 𝜃 ) )
5 3 bianass ( ( 𝜓𝜃 ) ↔ ( ( 𝜓𝜒 ) ∧ 𝜃 ) )
6 2 4 5 3bitr4g ( ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜒 ) ) → ( ( 𝜑𝜃 ) ↔ ( 𝜓𝜃 ) ) )
7 6 anim2i ( ( ( 𝜑𝜓 ) ∧ ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜒 ) ) ) → ( ( 𝜑𝜓 ) ∧ ( ( 𝜑𝜃 ) ↔ ( 𝜓𝜃 ) ) ) )
8 df-redundp ( redund ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜒 ) ) ) )
9 df-redundp ( redund ( 𝜑 , 𝜓 , 𝜃 ) ↔ ( ( 𝜑𝜓 ) ∧ ( ( 𝜑𝜃 ) ↔ ( 𝜓𝜃 ) ) ) )
10 7 8 9 3imtr4i ( redund ( 𝜑 , 𝜓 , 𝜒 ) → redund ( 𝜑 , 𝜓 , 𝜃 ) )