Step |
Hyp |
Ref |
Expression |
1 |
|
redundpim3.1 |
⊢ ( 𝜃 → 𝜒 ) |
2 |
|
anbi1 |
⊢ ( ( ( 𝜑 ∧ 𝜒 ) ↔ ( 𝜓 ∧ 𝜒 ) ) → ( ( ( 𝜑 ∧ 𝜒 ) ∧ 𝜃 ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) ) |
3 |
1
|
pm4.71ri |
⊢ ( 𝜃 ↔ ( 𝜒 ∧ 𝜃 ) ) |
4 |
3
|
bianass |
⊢ ( ( 𝜑 ∧ 𝜃 ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ 𝜃 ) ) |
5 |
3
|
bianass |
⊢ ( ( 𝜓 ∧ 𝜃 ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) |
6 |
2 4 5
|
3bitr4g |
⊢ ( ( ( 𝜑 ∧ 𝜒 ) ↔ ( 𝜓 ∧ 𝜒 ) ) → ( ( 𝜑 ∧ 𝜃 ) ↔ ( 𝜓 ∧ 𝜃 ) ) ) |
7 |
6
|
anim2i |
⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( ( 𝜑 ∧ 𝜒 ) ↔ ( 𝜓 ∧ 𝜒 ) ) ) → ( ( 𝜑 → 𝜓 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ↔ ( 𝜓 ∧ 𝜃 ) ) ) ) |
8 |
|
df-redundp |
⊢ ( redund ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( ( 𝜑 ∧ 𝜒 ) ↔ ( 𝜓 ∧ 𝜒 ) ) ) ) |
9 |
|
df-redundp |
⊢ ( redund ( 𝜑 , 𝜓 , 𝜃 ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ↔ ( 𝜓 ∧ 𝜃 ) ) ) ) |
10 |
7 8 9
|
3imtr4i |
⊢ ( redund ( 𝜑 , 𝜓 , 𝜒 ) → redund ( 𝜑 , 𝜓 , 𝜃 ) ) |