Description: Alternate definition of the class of reflexive relations. (Contributed by Peter Mazsa, 8-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | dfrefrels3 | ⊢ RefRels = { 𝑟 ∈ Rels ∣ ∀ 𝑥 ∈ dom 𝑟 ∀ 𝑦 ∈ ran 𝑟 ( 𝑥 = 𝑦 → 𝑥 𝑟 𝑦 ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrefrels2 | ⊢ RefRels = { 𝑟 ∈ Rels ∣ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ 𝑟 } | |
2 | idinxpss | ⊢ ( ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ 𝑟 ↔ ∀ 𝑥 ∈ dom 𝑟 ∀ 𝑦 ∈ ran 𝑟 ( 𝑥 = 𝑦 → 𝑥 𝑟 𝑦 ) ) | |
3 | 1 2 | rabbieq | ⊢ RefRels = { 𝑟 ∈ Rels ∣ ∀ 𝑥 ∈ dom 𝑟 ∀ 𝑦 ∈ ran 𝑟 ( 𝑥 = 𝑦 → 𝑥 𝑟 𝑦 ) } |