Metamath Proof Explorer


Theorem dfrefrels3

Description: Alternate definition of the class of reflexive relations. (Contributed by Peter Mazsa, 8-Jul-2019)

Ref Expression
Assertion dfrefrels3 RefRels = { 𝑟 ∈ Rels ∣ ∀ 𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟 ( 𝑥 = 𝑦𝑥 𝑟 𝑦 ) }

Proof

Step Hyp Ref Expression
1 dfrefrels2 RefRels = { 𝑟 ∈ Rels ∣ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ 𝑟 }
2 idinxpss ( ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ 𝑟 ↔ ∀ 𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟 ( 𝑥 = 𝑦𝑥 𝑟 𝑦 ) )
3 1 2 rabbieq RefRels = { 𝑟 ∈ Rels ∣ ∀ 𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟 ( 𝑥 = 𝑦𝑥 𝑟 𝑦 ) }