Metamath Proof Explorer


Theorem reim0bd

Description: A number is real iff its imaginary part is 0. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses recld.1 φA
reim0bd.2 φA=0
Assertion reim0bd φA

Proof

Step Hyp Ref Expression
1 recld.1 φA
2 reim0bd.2 φA=0
3 reim0b AAA=0
4 1 3 syl φAA=0
5 2 4 mpbird φA