Metamath Proof Explorer


Theorem relbrcnv

Description: When R is a relation, the sethood assumptions on brcnv can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015)

Ref Expression
Hypothesis relbrcnv.1 RelR
Assertion relbrcnv AR-1BBRA

Proof

Step Hyp Ref Expression
1 relbrcnv.1 RelR
2 relbrcnvg RelRAR-1BBRA
3 1 2 ax-mp AR-1BBRA