Metamath Proof Explorer


Theorem relmpoopab

Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypothesis relmpoopab.1 F=xA,yBzw|φ
Assertion relmpoopab RelCFD

Proof

Step Hyp Ref Expression
1 relmpoopab.1 F=xA,yBzw|φ
2 relopabv Relzw|φ
3 df-rel Relzw|φzw|φV×V
4 2 3 mpbi zw|φV×V
5 4 rgen2w xAyBzw|φV×V
6 1 ovmptss xAyBzw|φV×VCFDV×V
7 5 6 ax-mp CFDV×V
8 df-rel RelCFDCFDV×V
9 7 8 mpbir RelCFD