Metamath Proof Explorer


Theorem ovmptss

Description: If all the values of the mapping are subsets of a class X , then so is any evaluation of the mapping. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypothesis ovmptss.1 F = x A , y B C
Assertion ovmptss x A y B C X E F G X

Proof

Step Hyp Ref Expression
1 ovmptss.1 F = x A , y B C
2 mpomptsx x A , y B C = z x A x × B 1 st z / x 2 nd z / y C
3 1 2 eqtri F = z x A x × B 1 st z / x 2 nd z / y C
4 3 fvmptss z x A x × B 1 st z / x 2 nd z / y C X F E G X
5 vex u V
6 vex v V
7 5 6 op1std z = u v 1 st z = u
8 7 csbeq1d z = u v 1 st z / x 2 nd z / y C = u / x 2 nd z / y C
9 5 6 op2ndd z = u v 2 nd z = v
10 9 csbeq1d z = u v 2 nd z / y C = v / y C
11 10 csbeq2dv z = u v u / x 2 nd z / y C = u / x v / y C
12 8 11 eqtrd z = u v 1 st z / x 2 nd z / y C = u / x v / y C
13 12 sseq1d z = u v 1 st z / x 2 nd z / y C X u / x v / y C X
14 13 raliunxp z u A u × u / x B 1 st z / x 2 nd z / y C X u A v u / x B u / x v / y C X
15 nfcv _ u x × B
16 nfcv _ x u
17 nfcsb1v _ x u / x B
18 16 17 nfxp _ x u × u / x B
19 sneq x = u x = u
20 csbeq1a x = u B = u / x B
21 19 20 xpeq12d x = u x × B = u × u / x B
22 15 18 21 cbviun x A x × B = u A u × u / x B
23 22 raleqi z x A x × B 1 st z / x 2 nd z / y C X z u A u × u / x B 1 st z / x 2 nd z / y C X
24 nfv u y B C X
25 nfcsb1v _ x u / x v / y C
26 nfcv _ x X
27 25 26 nfss x u / x v / y C X
28 17 27 nfralw x v u / x B u / x v / y C X
29 nfv v C X
30 nfcsb1v _ y v / y C
31 nfcv _ y X
32 30 31 nfss y v / y C X
33 csbeq1a y = v C = v / y C
34 33 sseq1d y = v C X v / y C X
35 29 32 34 cbvralw y B C X v B v / y C X
36 csbeq1a x = u v / y C = u / x v / y C
37 36 sseq1d x = u v / y C X u / x v / y C X
38 20 37 raleqbidv x = u v B v / y C X v u / x B u / x v / y C X
39 35 38 bitrid x = u y B C X v u / x B u / x v / y C X
40 24 28 39 cbvralw x A y B C X u A v u / x B u / x v / y C X
41 14 23 40 3bitr4ri x A y B C X z x A x × B 1 st z / x 2 nd z / y C X
42 df-ov E F G = F E G
43 42 sseq1i E F G X F E G X
44 4 41 43 3imtr4i x A y B C X E F G X