Metamath Proof Explorer


Theorem fvmptss

Description: If all the values of the mapping are subsets of a class C , then so is any evaluation of the mapping, even if D is not in the base set A . (Contributed by Mario Carneiro, 13-Feb-2015)

Ref Expression
Hypothesis mptrcl.1 F = x A B
Assertion fvmptss x A B C F D C

Proof

Step Hyp Ref Expression
1 mptrcl.1 F = x A B
2 1 dmmptss dom F A
3 2 sseli D dom F D A
4 fveq2 y = D F y = F D
5 4 sseq1d y = D F y C F D C
6 5 imbi2d y = D x A B C F y C x A B C F D C
7 nfcv _ x y
8 nfra1 x x A B C
9 nfmpt1 _ x x A B
10 1 9 nfcxfr _ x F
11 10 7 nffv _ x F y
12 nfcv _ x C
13 11 12 nfss x F y C
14 8 13 nfim x x A B C F y C
15 fveq2 x = y F x = F y
16 15 sseq1d x = y F x C F y C
17 16 imbi2d x = y x A B C F x C x A B C F y C
18 1 dmmpt dom F = x A | B V
19 18 rabeq2i x dom F x A B V
20 1 fvmpt2 x A B V F x = B
21 eqimss F x = B F x B
22 20 21 syl x A B V F x B
23 19 22 sylbi x dom F F x B
24 ndmfv ¬ x dom F F x =
25 0ss B
26 24 25 eqsstrdi ¬ x dom F F x B
27 23 26 pm2.61i F x B
28 rsp x A B C x A B C
29 28 impcom x A x A B C B C
30 27 29 sstrid x A x A B C F x C
31 30 ex x A x A B C F x C
32 7 14 17 31 vtoclgaf y A x A B C F y C
33 6 32 vtoclga D A x A B C F D C
34 33 impcom x A B C D A F D C
35 3 34 sylan2 x A B C D dom F F D C
36 ndmfv ¬ D dom F F D =
37 36 adantl x A B C ¬ D dom F F D =
38 0ss C
39 37 38 eqsstrdi x A B C ¬ D dom F F D C
40 35 39 pm2.61dan x A B C F D C