Metamath Proof Explorer


Theorem nfss

Description: If x is not free in A and B , it is not free in A C_ B . (Contributed by NM, 27-Dec-1996)

Ref Expression
Hypotheses dfss2f.1 _xA
dfss2f.2 _xB
Assertion nfss xAB

Proof

Step Hyp Ref Expression
1 dfss2f.1 _xA
2 dfss2f.2 _xB
3 1 2 dfss3f ABxAxB
4 nfra1 xxAxB
5 3 4 nfxfr xAB