Metamath Proof Explorer


Theorem nfss

Description: If x is not free in A and B , it is not free in A C_ B . (Contributed by NM, 27-Dec-1996)

Ref Expression
Hypotheses dfss2f.1 _ x A
dfss2f.2 _ x B
Assertion nfss x A B

Proof

Step Hyp Ref Expression
1 dfss2f.1 _ x A
2 dfss2f.2 _ x B
3 1 2 dfss3f A B x A x B
4 nfra1 x x A x B
5 3 4 nfxfr x A B