Step |
Hyp |
Ref |
Expression |
1 |
|
mptrcl.1 |
|- F = ( x e. A |-> B ) |
2 |
1
|
dmmptss |
|- dom F C_ A |
3 |
2
|
sseli |
|- ( D e. dom F -> D e. A ) |
4 |
|
fveq2 |
|- ( y = D -> ( F ` y ) = ( F ` D ) ) |
5 |
4
|
sseq1d |
|- ( y = D -> ( ( F ` y ) C_ C <-> ( F ` D ) C_ C ) ) |
6 |
5
|
imbi2d |
|- ( y = D -> ( ( A. x e. A B C_ C -> ( F ` y ) C_ C ) <-> ( A. x e. A B C_ C -> ( F ` D ) C_ C ) ) ) |
7 |
|
nfcv |
|- F/_ x y |
8 |
|
nfra1 |
|- F/ x A. x e. A B C_ C |
9 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> B ) |
10 |
1 9
|
nfcxfr |
|- F/_ x F |
11 |
10 7
|
nffv |
|- F/_ x ( F ` y ) |
12 |
|
nfcv |
|- F/_ x C |
13 |
11 12
|
nfss |
|- F/ x ( F ` y ) C_ C |
14 |
8 13
|
nfim |
|- F/ x ( A. x e. A B C_ C -> ( F ` y ) C_ C ) |
15 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
16 |
15
|
sseq1d |
|- ( x = y -> ( ( F ` x ) C_ C <-> ( F ` y ) C_ C ) ) |
17 |
16
|
imbi2d |
|- ( x = y -> ( ( A. x e. A B C_ C -> ( F ` x ) C_ C ) <-> ( A. x e. A B C_ C -> ( F ` y ) C_ C ) ) ) |
18 |
1
|
dmmpt |
|- dom F = { x e. A | B e. _V } |
19 |
18
|
rabeq2i |
|- ( x e. dom F <-> ( x e. A /\ B e. _V ) ) |
20 |
1
|
fvmpt2 |
|- ( ( x e. A /\ B e. _V ) -> ( F ` x ) = B ) |
21 |
|
eqimss |
|- ( ( F ` x ) = B -> ( F ` x ) C_ B ) |
22 |
20 21
|
syl |
|- ( ( x e. A /\ B e. _V ) -> ( F ` x ) C_ B ) |
23 |
19 22
|
sylbi |
|- ( x e. dom F -> ( F ` x ) C_ B ) |
24 |
|
ndmfv |
|- ( -. x e. dom F -> ( F ` x ) = (/) ) |
25 |
|
0ss |
|- (/) C_ B |
26 |
24 25
|
eqsstrdi |
|- ( -. x e. dom F -> ( F ` x ) C_ B ) |
27 |
23 26
|
pm2.61i |
|- ( F ` x ) C_ B |
28 |
|
rsp |
|- ( A. x e. A B C_ C -> ( x e. A -> B C_ C ) ) |
29 |
28
|
impcom |
|- ( ( x e. A /\ A. x e. A B C_ C ) -> B C_ C ) |
30 |
27 29
|
sstrid |
|- ( ( x e. A /\ A. x e. A B C_ C ) -> ( F ` x ) C_ C ) |
31 |
30
|
ex |
|- ( x e. A -> ( A. x e. A B C_ C -> ( F ` x ) C_ C ) ) |
32 |
7 14 17 31
|
vtoclgaf |
|- ( y e. A -> ( A. x e. A B C_ C -> ( F ` y ) C_ C ) ) |
33 |
6 32
|
vtoclga |
|- ( D e. A -> ( A. x e. A B C_ C -> ( F ` D ) C_ C ) ) |
34 |
33
|
impcom |
|- ( ( A. x e. A B C_ C /\ D e. A ) -> ( F ` D ) C_ C ) |
35 |
3 34
|
sylan2 |
|- ( ( A. x e. A B C_ C /\ D e. dom F ) -> ( F ` D ) C_ C ) |
36 |
|
ndmfv |
|- ( -. D e. dom F -> ( F ` D ) = (/) ) |
37 |
36
|
adantl |
|- ( ( A. x e. A B C_ C /\ -. D e. dom F ) -> ( F ` D ) = (/) ) |
38 |
|
0ss |
|- (/) C_ C |
39 |
37 38
|
eqsstrdi |
|- ( ( A. x e. A B C_ C /\ -. D e. dom F ) -> ( F ` D ) C_ C ) |
40 |
35 39
|
pm2.61dan |
|- ( A. x e. A B C_ C -> ( F ` D ) C_ C ) |