Metamath Proof Explorer


Theorem fvmpt2d

Description: Deduction version of fvmpt2 . (Contributed by Thierry Arnoux, 8-Dec-2016)

Ref Expression
Hypotheses fvmpt2d.1 φF=xAB
fvmpt2d.4 φxABV
Assertion fvmpt2d φxAFx=B

Proof

Step Hyp Ref Expression
1 fvmpt2d.1 φF=xAB
2 fvmpt2d.4 φxABV
3 1 fveq1d φFx=xABx
4 3 adantr φxAFx=xABx
5 id xAxA
6 eqid xAB=xAB
7 6 fvmpt2 xABVxABx=B
8 5 2 7 syl2an2 φxAxABx=B
9 4 8 eqtrd φxAFx=B