Metamath Proof Explorer


Theorem fvmpt2d

Description: Deduction version of fvmpt2 . (Contributed by Thierry Arnoux, 8-Dec-2016)

Ref Expression
Hypotheses fvmpt2d.1 ( 𝜑𝐹 = ( 𝑥𝐴𝐵 ) )
fvmpt2d.4 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
Assertion fvmpt2d ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 fvmpt2d.1 ( 𝜑𝐹 = ( 𝑥𝐴𝐵 ) )
2 fvmpt2d.4 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
3 1 fveq1d ( 𝜑 → ( 𝐹𝑥 ) = ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) )
4 3 adantr ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) = ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) )
5 id ( 𝑥𝐴𝑥𝐴 )
6 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
7 6 fvmpt2 ( ( 𝑥𝐴𝐵𝑉 ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )
8 5 2 7 syl2an2 ( ( 𝜑𝑥𝐴 ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )
9 4 8 eqtrd ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) = 𝐵 )