Metamath Proof Explorer


Theorem fvmptex

Description: Express a function F whose value B may not always be a set in terms of another function G for which sethood is guaranteed. (Note that (IB ) is just shorthand for if ( B e. V , B , (/) ) , and it is always a set by fvex .) Note also that these functions are not the same; wherever B ( C ) is not a set, C is not in the domain of F (so it evaluates to the empty set), but C is in the domain of G , and G ( C ) is defined to be the empty set. (Contributed by Mario Carneiro, 14-Jul-2013) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses fvmptex.1 F=xAB
fvmptex.2 G=xAIB
Assertion fvmptex FC=GC

Proof

Step Hyp Ref Expression
1 fvmptex.1 F=xAB
2 fvmptex.2 G=xAIB
3 csbeq1 y=Cy/xB=C/xB
4 nfcv _yB
5 nfcsb1v _xy/xB
6 csbeq1a x=yB=y/xB
7 4 5 6 cbvmpt xAB=yAy/xB
8 1 7 eqtri F=yAy/xB
9 3 8 fvmpti CAFC=IC/xB
10 3 fveq2d y=CIy/xB=IC/xB
11 nfcv _yIB
12 nfcv _xI
13 12 5 nffv _xIy/xB
14 6 fveq2d x=yIB=Iy/xB
15 11 13 14 cbvmpt xAIB=yAIy/xB
16 2 15 eqtri G=yAIy/xB
17 fvex IC/xBV
18 10 16 17 fvmpt CAGC=IC/xB
19 9 18 eqtr4d CAFC=GC
20 1 dmmptss domFA
21 20 sseli CdomFCA
22 ndmfv ¬CdomFFC=
23 21 22 nsyl5 ¬CAFC=
24 fvex IBV
25 24 2 dmmpti domG=A
26 25 eleq2i CdomGCA
27 ndmfv ¬CdomGGC=
28 26 27 sylnbir ¬CAGC=
29 23 28 eqtr4d ¬CAFC=GC
30 19 29 pm2.61i FC=GC