| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovmptss.1 |
|- F = ( x e. A , y e. B |-> C ) |
| 2 |
|
mpomptsx |
|- ( x e. A , y e. B |-> C ) = ( z e. U_ x e. A ( { x } X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) |
| 3 |
1 2
|
eqtri |
|- F = ( z e. U_ x e. A ( { x } X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) |
| 4 |
3
|
fvmptss |
|- ( A. z e. U_ x e. A ( { x } X. B ) [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C C_ X -> ( F ` <. E , G >. ) C_ X ) |
| 5 |
|
vex |
|- u e. _V |
| 6 |
|
vex |
|- v e. _V |
| 7 |
5 6
|
op1std |
|- ( z = <. u , v >. -> ( 1st ` z ) = u ) |
| 8 |
7
|
csbeq1d |
|- ( z = <. u , v >. -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C = [_ u / x ]_ [_ ( 2nd ` z ) / y ]_ C ) |
| 9 |
5 6
|
op2ndd |
|- ( z = <. u , v >. -> ( 2nd ` z ) = v ) |
| 10 |
9
|
csbeq1d |
|- ( z = <. u , v >. -> [_ ( 2nd ` z ) / y ]_ C = [_ v / y ]_ C ) |
| 11 |
10
|
csbeq2dv |
|- ( z = <. u , v >. -> [_ u / x ]_ [_ ( 2nd ` z ) / y ]_ C = [_ u / x ]_ [_ v / y ]_ C ) |
| 12 |
8 11
|
eqtrd |
|- ( z = <. u , v >. -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C = [_ u / x ]_ [_ v / y ]_ C ) |
| 13 |
12
|
sseq1d |
|- ( z = <. u , v >. -> ( [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C C_ X <-> [_ u / x ]_ [_ v / y ]_ C C_ X ) ) |
| 14 |
13
|
raliunxp |
|- ( A. z e. U_ u e. A ( { u } X. [_ u / x ]_ B ) [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C C_ X <-> A. u e. A A. v e. [_ u / x ]_ B [_ u / x ]_ [_ v / y ]_ C C_ X ) |
| 15 |
|
nfcv |
|- F/_ u ( { x } X. B ) |
| 16 |
|
nfcv |
|- F/_ x { u } |
| 17 |
|
nfcsb1v |
|- F/_ x [_ u / x ]_ B |
| 18 |
16 17
|
nfxp |
|- F/_ x ( { u } X. [_ u / x ]_ B ) |
| 19 |
|
sneq |
|- ( x = u -> { x } = { u } ) |
| 20 |
|
csbeq1a |
|- ( x = u -> B = [_ u / x ]_ B ) |
| 21 |
19 20
|
xpeq12d |
|- ( x = u -> ( { x } X. B ) = ( { u } X. [_ u / x ]_ B ) ) |
| 22 |
15 18 21
|
cbviun |
|- U_ x e. A ( { x } X. B ) = U_ u e. A ( { u } X. [_ u / x ]_ B ) |
| 23 |
22
|
raleqi |
|- ( A. z e. U_ x e. A ( { x } X. B ) [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C C_ X <-> A. z e. U_ u e. A ( { u } X. [_ u / x ]_ B ) [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C C_ X ) |
| 24 |
|
nfv |
|- F/ u A. y e. B C C_ X |
| 25 |
|
nfcsb1v |
|- F/_ x [_ u / x ]_ [_ v / y ]_ C |
| 26 |
|
nfcv |
|- F/_ x X |
| 27 |
25 26
|
nfss |
|- F/ x [_ u / x ]_ [_ v / y ]_ C C_ X |
| 28 |
17 27
|
nfralw |
|- F/ x A. v e. [_ u / x ]_ B [_ u / x ]_ [_ v / y ]_ C C_ X |
| 29 |
|
nfv |
|- F/ v C C_ X |
| 30 |
|
nfcsb1v |
|- F/_ y [_ v / y ]_ C |
| 31 |
|
nfcv |
|- F/_ y X |
| 32 |
30 31
|
nfss |
|- F/ y [_ v / y ]_ C C_ X |
| 33 |
|
csbeq1a |
|- ( y = v -> C = [_ v / y ]_ C ) |
| 34 |
33
|
sseq1d |
|- ( y = v -> ( C C_ X <-> [_ v / y ]_ C C_ X ) ) |
| 35 |
29 32 34
|
cbvralw |
|- ( A. y e. B C C_ X <-> A. v e. B [_ v / y ]_ C C_ X ) |
| 36 |
|
csbeq1a |
|- ( x = u -> [_ v / y ]_ C = [_ u / x ]_ [_ v / y ]_ C ) |
| 37 |
36
|
sseq1d |
|- ( x = u -> ( [_ v / y ]_ C C_ X <-> [_ u / x ]_ [_ v / y ]_ C C_ X ) ) |
| 38 |
20 37
|
raleqbidv |
|- ( x = u -> ( A. v e. B [_ v / y ]_ C C_ X <-> A. v e. [_ u / x ]_ B [_ u / x ]_ [_ v / y ]_ C C_ X ) ) |
| 39 |
35 38
|
bitrid |
|- ( x = u -> ( A. y e. B C C_ X <-> A. v e. [_ u / x ]_ B [_ u / x ]_ [_ v / y ]_ C C_ X ) ) |
| 40 |
24 28 39
|
cbvralw |
|- ( A. x e. A A. y e. B C C_ X <-> A. u e. A A. v e. [_ u / x ]_ B [_ u / x ]_ [_ v / y ]_ C C_ X ) |
| 41 |
14 23 40
|
3bitr4ri |
|- ( A. x e. A A. y e. B C C_ X <-> A. z e. U_ x e. A ( { x } X. B ) [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C C_ X ) |
| 42 |
|
df-ov |
|- ( E F G ) = ( F ` <. E , G >. ) |
| 43 |
42
|
sseq1i |
|- ( ( E F G ) C_ X <-> ( F ` <. E , G >. ) C_ X ) |
| 44 |
4 41 43
|
3imtr4i |
|- ( A. x e. A A. y e. B C C_ X -> ( E F G ) C_ X ) |