Metamath Proof Explorer


Theorem renepnfd

Description: No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rexrd.1 φA
Assertion renepnfd φA+∞

Proof

Step Hyp Ref Expression
1 rexrd.1 φA
2 renepnf AA+∞
3 1 2 syl φA+∞