Metamath Proof Explorer


Theorem rere

Description: A real number equals its real part. One direction of Proposition 10-3.4(f) of Gleason p. 133. (Contributed by Paul Chapman, 7-Sep-2007)

Ref Expression
Assertion rere AA=A

Proof

Step Hyp Ref Expression
1 recn AA
2 rereb AAA=A
3 1 2 syl AAA=A
4 3 ibi AA=A