Metamath Proof Explorer


Theorem rescofuf

Description: The restriction of functor composition is a function from product functor space to functor space. (Contributed by Zhi Wang, 25-Sep-2025)

Ref Expression
Assertion rescofuf func D Func E × C Func D : D Func E × C Func D C Func E

Proof

Step Hyp Ref Expression
1 vex g V
2 vex f V
3 opex 1 st g 1 st f x dom dom 2 nd f , y dom dom 2 nd f 1 st f x 2 nd g 1 st f y x 2 nd f y V
4 df-cofu func = g V , f V 1 st g 1 st f x dom dom 2 nd f , y dom dom 2 nd f 1 st f x 2 nd g 1 st f y x 2 nd f y
5 4 ovmpt4g g V f V 1 st g 1 st f x dom dom 2 nd f , y dom dom 2 nd f 1 st f x 2 nd g 1 st f y x 2 nd f y V g func f = 1 st g 1 st f x dom dom 2 nd f , y dom dom 2 nd f 1 st f x 2 nd g 1 st f y x 2 nd f y
6 1 2 3 5 mp3an g func f = 1 st g 1 st f x dom dom 2 nd f , y dom dom 2 nd f 1 st f x 2 nd g 1 st f y x 2 nd f y
7 simpr g D Func E f C Func D f C Func D
8 simpl g D Func E f C Func D g D Func E
9 7 8 cofucl g D Func E f C Func D g func f C Func E
10 6 9 eqeltrrid g D Func E f C Func D 1 st g 1 st f x dom dom 2 nd f , y dom dom 2 nd f 1 st f x 2 nd g 1 st f y x 2 nd f y C Func E
11 10 rgen2 g D Func E f C Func D 1 st g 1 st f x dom dom 2 nd f , y dom dom 2 nd f 1 st f x 2 nd g 1 st f y x 2 nd f y C Func E
12 4 reseq1i func D Func E × C Func D = g V , f V 1 st g 1 st f x dom dom 2 nd f , y dom dom 2 nd f 1 st f x 2 nd g 1 st f y x 2 nd f y D Func E × C Func D
13 ssv D Func E V
14 ssv C Func D V
15 resmpo D Func E V C Func D V g V , f V 1 st g 1 st f x dom dom 2 nd f , y dom dom 2 nd f 1 st f x 2 nd g 1 st f y x 2 nd f y D Func E × C Func D = g D Func E , f C Func D 1 st g 1 st f x dom dom 2 nd f , y dom dom 2 nd f 1 st f x 2 nd g 1 st f y x 2 nd f y
16 13 14 15 mp2an g V , f V 1 st g 1 st f x dom dom 2 nd f , y dom dom 2 nd f 1 st f x 2 nd g 1 st f y x 2 nd f y D Func E × C Func D = g D Func E , f C Func D 1 st g 1 st f x dom dom 2 nd f , y dom dom 2 nd f 1 st f x 2 nd g 1 st f y x 2 nd f y
17 12 16 eqtri func D Func E × C Func D = g D Func E , f C Func D 1 st g 1 st f x dom dom 2 nd f , y dom dom 2 nd f 1 st f x 2 nd g 1 st f y x 2 nd f y
18 17 fmpo g D Func E f C Func D 1 st g 1 st f x dom dom 2 nd f , y dom dom 2 nd f 1 st f x 2 nd g 1 st f y x 2 nd f y C Func E func D Func E × C Func D : D Func E × C Func D C Func E
19 11 18 mpbi func D Func E × C Func D : D Func E × C Func D C Func E