Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
|- g e. _V |
2 |
|
vex |
|- f e. _V |
3 |
|
opex |
|- <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. e. _V |
4 |
|
df-cofu |
|- o.func = ( g e. _V , f e. _V |-> <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. ) |
5 |
4
|
ovmpt4g |
|- ( ( g e. _V /\ f e. _V /\ <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. e. _V ) -> ( g o.func f ) = <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. ) |
6 |
1 2 3 5
|
mp3an |
|- ( g o.func f ) = <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. |
7 |
|
simpr |
|- ( ( g e. ( D Func E ) /\ f e. ( C Func D ) ) -> f e. ( C Func D ) ) |
8 |
|
simpl |
|- ( ( g e. ( D Func E ) /\ f e. ( C Func D ) ) -> g e. ( D Func E ) ) |
9 |
7 8
|
cofucl |
|- ( ( g e. ( D Func E ) /\ f e. ( C Func D ) ) -> ( g o.func f ) e. ( C Func E ) ) |
10 |
6 9
|
eqeltrrid |
|- ( ( g e. ( D Func E ) /\ f e. ( C Func D ) ) -> <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. e. ( C Func E ) ) |
11 |
10
|
rgen2 |
|- A. g e. ( D Func E ) A. f e. ( C Func D ) <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. e. ( C Func E ) |
12 |
4
|
reseq1i |
|- ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) = ( ( g e. _V , f e. _V |-> <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. ) |` ( ( D Func E ) X. ( C Func D ) ) ) |
13 |
|
ssv |
|- ( D Func E ) C_ _V |
14 |
|
ssv |
|- ( C Func D ) C_ _V |
15 |
|
resmpo |
|- ( ( ( D Func E ) C_ _V /\ ( C Func D ) C_ _V ) -> ( ( g e. _V , f e. _V |-> <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. ) |` ( ( D Func E ) X. ( C Func D ) ) ) = ( g e. ( D Func E ) , f e. ( C Func D ) |-> <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. ) ) |
16 |
13 14 15
|
mp2an |
|- ( ( g e. _V , f e. _V |-> <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. ) |` ( ( D Func E ) X. ( C Func D ) ) ) = ( g e. ( D Func E ) , f e. ( C Func D ) |-> <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. ) |
17 |
12 16
|
eqtri |
|- ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) = ( g e. ( D Func E ) , f e. ( C Func D ) |-> <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. ) |
18 |
17
|
fmpo |
|- ( A. g e. ( D Func E ) A. f e. ( C Func D ) <. ( ( 1st ` g ) o. ( 1st ` f ) ) , ( x e. dom dom ( 2nd ` f ) , y e. dom dom ( 2nd ` f ) |-> ( ( ( ( 1st ` f ) ` x ) ( 2nd ` g ) ( ( 1st ` f ) ` y ) ) o. ( x ( 2nd ` f ) y ) ) ) >. e. ( C Func E ) <-> ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) : ( ( D Func E ) X. ( C Func D ) ) --> ( C Func E ) ) |
19 |
11 18
|
mpbi |
|- ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) : ( ( D Func E ) X. ( C Func D ) ) --> ( C Func E ) |