Metamath Proof Explorer


Theorem resdm2

Description: A class restricted to its domain equals its double converse. (Contributed by NM, 8-Apr-2007)

Ref Expression
Assertion resdm2 AdomA=A-1-1

Proof

Step Hyp Ref Expression
1 rescnvcnv A-1-1domA-1-1=AdomA-1-1
2 relcnv RelA-1-1
3 resdm RelA-1-1A-1-1domA-1-1=A-1-1
4 2 3 ax-mp A-1-1domA-1-1=A-1-1
5 dmcnvcnv domA-1-1=domA
6 5 reseq2i AdomA-1-1=AdomA
7 1 4 6 3eqtr3ri AdomA=A-1-1