Metamath Proof Explorer


Theorem ressle

Description: le is unaffected by restriction. (Contributed by Mario Carneiro, 3-Nov-2015)

Ref Expression
Hypotheses ressle.1 W=K𝑠A
ressle.2 ˙=K
Assertion ressle AV˙=W

Proof

Step Hyp Ref Expression
1 ressle.1 W=K𝑠A
2 ressle.2 ˙=K
3 pleid le=Slotndx
4 plendxnbasendx ndxBasendx
5 1 2 3 4 resseqnbas AV˙=W