Metamath Proof Explorer


Theorem ressstarv

Description: *r is unaffected by restriction. (Contributed by Mario Carneiro, 9-Oct-2015)

Ref Expression
Hypotheses ressmulr.1 S=R𝑠A
ressstarv.2 ˙=*R
Assertion ressstarv AV˙=*S

Proof

Step Hyp Ref Expression
1 ressmulr.1 S=R𝑠A
2 ressstarv.2 ˙=*R
3 starvid 𝑟=Slot*ndx
4 starvndxnbasendx *ndxBasendx
5 1 2 3 4 resseqnbas AV˙=*S