Metamath Proof Explorer


Theorem restopn3

Description: If A is open, then A is open in the restriction to itself. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Assertion restopn3 JTopAJAJ𝑡A

Proof

Step Hyp Ref Expression
1 simpr JTopAJAJ
2 ssidd JTopAJAA
3 restopn2 JTopAJAJ𝑡AAJAA
4 1 2 3 mpbir2and JTopAJAJ𝑡A