Metamath Proof Explorer


Theorem resum2sqcl

Description: The sum of two squares of real numbers is a real number. (Contributed by AV, 7-Feb-2023)

Ref Expression
Hypothesis resum2sqcl.q Q=A2+B2
Assertion resum2sqcl ABQ

Proof

Step Hyp Ref Expression
1 resum2sqcl.q Q=A2+B2
2 simpl ABA
3 2 resqcld ABA2
4 simpr ABB
5 4 resqcld ABB2
6 3 5 readdcld ABA2+B2
7 1 6 eqeltrid ABQ