Metamath Proof Explorer


Theorem resum2sqgt0

Description: The sum of the square of a nonzero real number and the square of another real number is greater than zero. (Contributed by AV, 7-Feb-2023)

Ref Expression
Hypothesis resum2sqcl.q Q = A 2 + B 2
Assertion resum2sqgt0 A A 0 B 0 < Q

Proof

Step Hyp Ref Expression
1 resum2sqcl.q Q = A 2 + B 2
2 simpl A A 0 A
3 2 resqcld A A 0 A 2
4 3 adantr A A 0 B A 2
5 simpr A A 0 B B
6 5 resqcld A A 0 B B 2
7 sqgt0 A A 0 0 < A 2
8 7 adantr A A 0 B 0 < A 2
9 sqge0 B 0 B 2
10 9 adantl A A 0 B 0 B 2
11 4 6 8 10 addgtge0d A A 0 B 0 < A 2 + B 2
12 11 1 breqtrrdi A A 0 B 0 < Q