| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resum2sqcl.q |
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
| 2 |
|
simpl |
|- ( ( A e. RR /\ A =/= 0 ) -> A e. RR ) |
| 3 |
2
|
resqcld |
|- ( ( A e. RR /\ A =/= 0 ) -> ( A ^ 2 ) e. RR ) |
| 4 |
3
|
adantr |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> ( A ^ 2 ) e. RR ) |
| 5 |
|
simpr |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> B e. RR ) |
| 6 |
5
|
resqcld |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> ( B ^ 2 ) e. RR ) |
| 7 |
|
sqgt0 |
|- ( ( A e. RR /\ A =/= 0 ) -> 0 < ( A ^ 2 ) ) |
| 8 |
7
|
adantr |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> 0 < ( A ^ 2 ) ) |
| 9 |
|
sqge0 |
|- ( B e. RR -> 0 <_ ( B ^ 2 ) ) |
| 10 |
9
|
adantl |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> 0 <_ ( B ^ 2 ) ) |
| 11 |
4 6 8 10
|
addgtge0d |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> 0 < ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 12 |
11 1
|
breqtrrdi |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> 0 < Q ) |