Metamath Proof Explorer


Theorem resum2sqgt0

Description: The sum of the square of a nonzero real number and the square of another real number is greater than zero. (Contributed by AV, 7-Feb-2023)

Ref Expression
Hypothesis resum2sqcl.q
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) )
Assertion resum2sqgt0
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> 0 < Q )

Proof

Step Hyp Ref Expression
1 resum2sqcl.q
 |-  Q = ( ( A ^ 2 ) + ( B ^ 2 ) )
2 simpl
 |-  ( ( A e. RR /\ A =/= 0 ) -> A e. RR )
3 2 resqcld
 |-  ( ( A e. RR /\ A =/= 0 ) -> ( A ^ 2 ) e. RR )
4 3 adantr
 |-  ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> ( A ^ 2 ) e. RR )
5 simpr
 |-  ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> B e. RR )
6 5 resqcld
 |-  ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> ( B ^ 2 ) e. RR )
7 sqgt0
 |-  ( ( A e. RR /\ A =/= 0 ) -> 0 < ( A ^ 2 ) )
8 7 adantr
 |-  ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> 0 < ( A ^ 2 ) )
9 sqge0
 |-  ( B e. RR -> 0 <_ ( B ^ 2 ) )
10 9 adantl
 |-  ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> 0 <_ ( B ^ 2 ) )
11 4 6 8 10 addgtge0d
 |-  ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> 0 < ( ( A ^ 2 ) + ( B ^ 2 ) ) )
12 11 1 breqtrrdi
 |-  ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> 0 < Q )