Metamath Proof Explorer


Theorem resum2sqrp

Description: The sum of the square of a nonzero real number and the square of another real number is a positive real number. (Contributed by AV, 2-May-2023)

Ref Expression
Hypothesis resum2sqcl.q
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) )
Assertion resum2sqrp
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> Q e. RR+ )

Proof

Step Hyp Ref Expression
1 resum2sqcl.q
 |-  Q = ( ( A ^ 2 ) + ( B ^ 2 ) )
2 1 resum2sqcl
 |-  ( ( A e. RR /\ B e. RR ) -> Q e. RR )
3 2 adantlr
 |-  ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> Q e. RR )
4 1 resum2sqgt0
 |-  ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> 0 < Q )
5 3 4 elrpd
 |-  ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> Q e. RR+ )