Metamath Proof Explorer


Theorem resum2sqrp

Description: The sum of the square of a nonzero real number and the square of another real number is a positive real number. (Contributed by AV, 2-May-2023)

Ref Expression
Hypothesis resum2sqcl.q 𝑄 = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) )
Assertion resum2sqrp ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 𝑄 ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 resum2sqcl.q 𝑄 = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) )
2 1 resum2sqcl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝑄 ∈ ℝ )
3 2 adantlr ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 𝑄 ∈ ℝ )
4 1 resum2sqgt0 ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 0 < 𝑄 )
5 3 4 elrpd ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 𝑄 ∈ ℝ+ )