Description: The sum of the square of a nonzero real number and the square of another real number is a positive real number. (Contributed by AV, 2-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | resum2sqcl.q | ⊢ 𝑄 = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) | |
Assertion | resum2sqrp | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 𝑄 ∈ ℝ+ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resum2sqcl.q | ⊢ 𝑄 = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) | |
2 | 1 | resum2sqcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝑄 ∈ ℝ ) |
3 | 2 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 𝑄 ∈ ℝ ) |
4 | 1 | resum2sqgt0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 0 < 𝑄 ) |
5 | 3 4 | elrpd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 𝑄 ∈ ℝ+ ) |