| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resum2sqcl.q | ⊢ 𝑄  =  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) | 
						
							| 2 | 1 | resum2sqgt0 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℝ )  →  0  <  𝑄 ) | 
						
							| 3 | 2 | ex | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( 𝐵  ∈  ℝ  →  0  <  𝑄 ) ) | 
						
							| 4 | 3 | expcom | ⊢ ( 𝐴  ≠  0  →  ( 𝐴  ∈  ℝ  →  ( 𝐵  ∈  ℝ  →  0  <  𝑄 ) ) ) | 
						
							| 5 | 4 | com23 | ⊢ ( 𝐴  ≠  0  →  ( 𝐵  ∈  ℝ  →  ( 𝐴  ∈  ℝ  →  0  <  𝑄 ) ) ) | 
						
							| 6 |  | eqid | ⊢ ( ( 𝐵 ↑ 2 )  +  ( 𝐴 ↑ 2 ) )  =  ( ( 𝐵 ↑ 2 )  +  ( 𝐴 ↑ 2 ) ) | 
						
							| 7 | 6 | resum2sqgt0 | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐴  ∈  ℝ )  →  0  <  ( ( 𝐵 ↑ 2 )  +  ( 𝐴 ↑ 2 ) ) ) | 
						
							| 8 | 1 | breq2i | ⊢ ( 0  <  𝑄  ↔  0  <  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 9 |  | resqcl | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴 ↑ 2 )  ∈  ℝ ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐴  ∈  ℝ )  →  ( 𝐴 ↑ 2 )  ∈  ℝ ) | 
						
							| 11 | 10 | recnd | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐴  ∈  ℝ )  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 12 |  | resqcl | ⊢ ( 𝐵  ∈  ℝ  →  ( 𝐵 ↑ 2 )  ∈  ℝ ) | 
						
							| 13 | 12 | ad2antrr | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐴  ∈  ℝ )  →  ( 𝐵 ↑ 2 )  ∈  ℝ ) | 
						
							| 14 | 13 | recnd | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐴  ∈  ℝ )  →  ( 𝐵 ↑ 2 )  ∈  ℂ ) | 
						
							| 15 | 11 14 | addcomd | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐴  ∈  ℝ )  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( ( 𝐵 ↑ 2 )  +  ( 𝐴 ↑ 2 ) ) ) | 
						
							| 16 | 15 | breq2d | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐴  ∈  ℝ )  →  ( 0  <  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ↔  0  <  ( ( 𝐵 ↑ 2 )  +  ( 𝐴 ↑ 2 ) ) ) ) | 
						
							| 17 | 8 16 | bitrid | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐴  ∈  ℝ )  →  ( 0  <  𝑄  ↔  0  <  ( ( 𝐵 ↑ 2 )  +  ( 𝐴 ↑ 2 ) ) ) ) | 
						
							| 18 | 7 17 | mpbird | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐴  ∈  ℝ )  →  0  <  𝑄 ) | 
						
							| 19 | 18 | ex | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  →  ( 𝐴  ∈  ℝ  →  0  <  𝑄 ) ) | 
						
							| 20 | 19 | expcom | ⊢ ( 𝐵  ≠  0  →  ( 𝐵  ∈  ℝ  →  ( 𝐴  ∈  ℝ  →  0  <  𝑄 ) ) ) | 
						
							| 21 | 5 20 | jaoi | ⊢ ( ( 𝐴  ≠  0  ∨  𝐵  ≠  0 )  →  ( 𝐵  ∈  ℝ  →  ( 𝐴  ∈  ℝ  →  0  <  𝑄 ) ) ) | 
						
							| 22 | 21 | 3imp31 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( 𝐴  ≠  0  ∨  𝐵  ≠  0 ) )  →  0  <  𝑄 ) |