| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resum2sqcl.q |  |-  Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) | 
						
							| 2 | 1 | resum2sqgt0 |  |-  ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> 0 < Q ) | 
						
							| 3 | 2 | ex |  |-  ( ( A e. RR /\ A =/= 0 ) -> ( B e. RR -> 0 < Q ) ) | 
						
							| 4 | 3 | expcom |  |-  ( A =/= 0 -> ( A e. RR -> ( B e. RR -> 0 < Q ) ) ) | 
						
							| 5 | 4 | com23 |  |-  ( A =/= 0 -> ( B e. RR -> ( A e. RR -> 0 < Q ) ) ) | 
						
							| 6 |  | eqid |  |-  ( ( B ^ 2 ) + ( A ^ 2 ) ) = ( ( B ^ 2 ) + ( A ^ 2 ) ) | 
						
							| 7 | 6 | resum2sqgt0 |  |-  ( ( ( B e. RR /\ B =/= 0 ) /\ A e. RR ) -> 0 < ( ( B ^ 2 ) + ( A ^ 2 ) ) ) | 
						
							| 8 | 1 | breq2i |  |-  ( 0 < Q <-> 0 < ( ( A ^ 2 ) + ( B ^ 2 ) ) ) | 
						
							| 9 |  | resqcl |  |-  ( A e. RR -> ( A ^ 2 ) e. RR ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( B e. RR /\ B =/= 0 ) /\ A e. RR ) -> ( A ^ 2 ) e. RR ) | 
						
							| 11 | 10 | recnd |  |-  ( ( ( B e. RR /\ B =/= 0 ) /\ A e. RR ) -> ( A ^ 2 ) e. CC ) | 
						
							| 12 |  | resqcl |  |-  ( B e. RR -> ( B ^ 2 ) e. RR ) | 
						
							| 13 | 12 | ad2antrr |  |-  ( ( ( B e. RR /\ B =/= 0 ) /\ A e. RR ) -> ( B ^ 2 ) e. RR ) | 
						
							| 14 | 13 | recnd |  |-  ( ( ( B e. RR /\ B =/= 0 ) /\ A e. RR ) -> ( B ^ 2 ) e. CC ) | 
						
							| 15 | 11 14 | addcomd |  |-  ( ( ( B e. RR /\ B =/= 0 ) /\ A e. RR ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( B ^ 2 ) + ( A ^ 2 ) ) ) | 
						
							| 16 | 15 | breq2d |  |-  ( ( ( B e. RR /\ B =/= 0 ) /\ A e. RR ) -> ( 0 < ( ( A ^ 2 ) + ( B ^ 2 ) ) <-> 0 < ( ( B ^ 2 ) + ( A ^ 2 ) ) ) ) | 
						
							| 17 | 8 16 | bitrid |  |-  ( ( ( B e. RR /\ B =/= 0 ) /\ A e. RR ) -> ( 0 < Q <-> 0 < ( ( B ^ 2 ) + ( A ^ 2 ) ) ) ) | 
						
							| 18 | 7 17 | mpbird |  |-  ( ( ( B e. RR /\ B =/= 0 ) /\ A e. RR ) -> 0 < Q ) | 
						
							| 19 | 18 | ex |  |-  ( ( B e. RR /\ B =/= 0 ) -> ( A e. RR -> 0 < Q ) ) | 
						
							| 20 | 19 | expcom |  |-  ( B =/= 0 -> ( B e. RR -> ( A e. RR -> 0 < Q ) ) ) | 
						
							| 21 | 5 20 | jaoi |  |-  ( ( A =/= 0 \/ B =/= 0 ) -> ( B e. RR -> ( A e. RR -> 0 < Q ) ) ) | 
						
							| 22 | 21 | 3imp31 |  |-  ( ( A e. RR /\ B e. RR /\ ( A =/= 0 \/ B =/= 0 ) ) -> 0 < Q ) |