Step |
Hyp |
Ref |
Expression |
1 |
|
orc |
|- ( C < A -> ( C < A \/ C e. ( A [,] B ) ) ) |
2 |
1
|
a1d |
|- ( C < A -> ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C <_ B ) -> ( C < A \/ C e. ( A [,] B ) ) ) ) |
3 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
4 |
3
|
ad2antrr |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C <_ B ) /\ -. C < A ) -> C e. RR ) |
5 |
|
lenlt |
|- ( ( A e. RR /\ C e. RR ) -> ( A <_ C <-> -. C < A ) ) |
6 |
5
|
biimprd |
|- ( ( A e. RR /\ C e. RR ) -> ( -. C < A -> A <_ C ) ) |
7 |
6
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -. C < A -> A <_ C ) ) |
8 |
7
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C <_ B ) -> ( -. C < A -> A <_ C ) ) |
9 |
8
|
imp |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C <_ B ) /\ -. C < A ) -> A <_ C ) |
10 |
|
simplr |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C <_ B ) /\ -. C < A ) -> C <_ B ) |
11 |
|
3simpa |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A e. RR /\ B e. RR ) ) |
12 |
11
|
ad2antrr |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C <_ B ) /\ -. C < A ) -> ( A e. RR /\ B e. RR ) ) |
13 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |
14 |
12 13
|
syl |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C <_ B ) /\ -. C < A ) -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |
15 |
4 9 10 14
|
mpbir3and |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C <_ B ) /\ -. C < A ) -> C e. ( A [,] B ) ) |
16 |
15
|
olcd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C <_ B ) /\ -. C < A ) -> ( C < A \/ C e. ( A [,] B ) ) ) |
17 |
16
|
expcom |
|- ( -. C < A -> ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C <_ B ) -> ( C < A \/ C e. ( A [,] B ) ) ) ) |
18 |
2 17
|
pm2.61i |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C <_ B ) -> ( C < A \/ C e. ( A [,] B ) ) ) |
19 |
18
|
orcd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C <_ B ) -> ( ( C < A \/ C e. ( A [,] B ) ) \/ B < C ) ) |
20 |
19
|
ex |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C <_ B -> ( ( C < A \/ C e. ( A [,] B ) ) \/ B < C ) ) ) |
21 |
|
olc |
|- ( B < C -> ( ( C < A \/ C e. ( A [,] B ) ) \/ B < C ) ) |
22 |
21
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B < C -> ( ( C < A \/ C e. ( A [,] B ) ) \/ B < C ) ) ) |
23 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
24 |
|
lelttric |
|- ( ( C e. RR /\ B e. RR ) -> ( C <_ B \/ B < C ) ) |
25 |
3 23 24
|
syl2anc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C <_ B \/ B < C ) ) |
26 |
20 22 25
|
mpjaod |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C < A \/ C e. ( A [,] B ) ) \/ B < C ) ) |
27 |
|
df-3or |
|- ( ( C < A \/ C e. ( A [,] B ) \/ B < C ) <-> ( ( C < A \/ C e. ( A [,] B ) ) \/ B < C ) ) |
28 |
26 27
|
sylibr |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C < A \/ C e. ( A [,] B ) \/ B < C ) ) |