Metamath Proof Explorer


Theorem reorelicc

Description: Membership in and outside of a closed real interval. (Contributed by AV, 15-Feb-2023)

Ref Expression
Assertion reorelicc A B C C < A C A B B < C

Proof

Step Hyp Ref Expression
1 orc C < A C < A C A B
2 1 a1d C < A A B C C B C < A C A B
3 simp3 A B C C
4 3 ad2antrr A B C C B ¬ C < A C
5 lenlt A C A C ¬ C < A
6 5 biimprd A C ¬ C < A A C
7 6 3adant2 A B C ¬ C < A A C
8 7 adantr A B C C B ¬ C < A A C
9 8 imp A B C C B ¬ C < A A C
10 simplr A B C C B ¬ C < A C B
11 3simpa A B C A B
12 11 ad2antrr A B C C B ¬ C < A A B
13 elicc2 A B C A B C A C C B
14 12 13 syl A B C C B ¬ C < A C A B C A C C B
15 4 9 10 14 mpbir3and A B C C B ¬ C < A C A B
16 15 olcd A B C C B ¬ C < A C < A C A B
17 16 expcom ¬ C < A A B C C B C < A C A B
18 2 17 pm2.61i A B C C B C < A C A B
19 18 orcd A B C C B C < A C A B B < C
20 19 ex A B C C B C < A C A B B < C
21 olc B < C C < A C A B B < C
22 21 a1i A B C B < C C < A C A B B < C
23 simp2 A B C B
24 lelttric C B C B B < C
25 3 23 24 syl2anc A B C C B B < C
26 20 22 25 mpjaod A B C C < A C A B B < C
27 df-3or C < A C A B B < C C < A C A B B < C
28 26 27 sylibr A B C C < A C A B B < C