Metamath Proof Explorer


Theorem reorelicc

Description: Membership in and outside of a closed real interval. (Contributed by AV, 15-Feb-2023)

Ref Expression
Assertion reorelicc ABCC<ACABB<C

Proof

Step Hyp Ref Expression
1 orc C<AC<ACAB
2 1 a1d C<AABCCBC<ACAB
3 simp3 ABCC
4 3 ad2antrr ABCCB¬C<AC
5 lenlt ACAC¬C<A
6 5 biimprd AC¬C<AAC
7 6 3adant2 ABC¬C<AAC
8 7 adantr ABCCB¬C<AAC
9 8 imp ABCCB¬C<AAC
10 simplr ABCCB¬C<ACB
11 3simpa ABCAB
12 11 ad2antrr ABCCB¬C<AAB
13 elicc2 ABCABCACCB
14 12 13 syl ABCCB¬C<ACABCACCB
15 4 9 10 14 mpbir3and ABCCB¬C<ACAB
16 15 olcd ABCCB¬C<AC<ACAB
17 16 expcom ¬C<AABCCBC<ACAB
18 2 17 pm2.61i ABCCBC<ACAB
19 18 orcd ABCCBC<ACABB<C
20 19 ex ABCCBC<ACABB<C
21 olc B<CC<ACABB<C
22 21 a1i ABCB<CC<ACABB<C
23 simp2 ABCB
24 lelttric CBCBB<C
25 3 23 24 syl2anc ABCCBB<C
26 20 22 25 mpjaod ABCC<ACABB<C
27 df-3or C<ACABB<CC<ACABB<C
28 26 27 sylibr ABCC<ACABB<C