Description: Membership in and outside of a closed real interval. (Contributed by AV, 15-Feb-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | reorelicc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc | |
|
2 | 1 | a1d | |
3 | simp3 | |
|
4 | 3 | ad2antrr | |
5 | lenlt | |
|
6 | 5 | biimprd | |
7 | 6 | 3adant2 | |
8 | 7 | adantr | |
9 | 8 | imp | |
10 | simplr | |
|
11 | 3simpa | |
|
12 | 11 | ad2antrr | |
13 | elicc2 | |
|
14 | 12 13 | syl | |
15 | 4 9 10 14 | mpbir3and | |
16 | 15 | olcd | |
17 | 16 | expcom | |
18 | 2 17 | pm2.61i | |
19 | 18 | orcd | |
20 | 19 | ex | |
21 | olc | |
|
22 | 21 | a1i | |
23 | simp2 | |
|
24 | lelttric | |
|
25 | 3 23 24 | syl2anc | |
26 | 20 22 25 | mpjaod | |
27 | df-3or | |
|
28 | 26 27 | sylibr | |