Metamath Proof Explorer


Theorem elicc2

Description: Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007) (Revised by Mario Carneiro, 14-Jun-2014)

Ref Expression
Assertion elicc2 A B C A B C A C C B

Proof

Step Hyp Ref Expression
1 rexr A A *
2 rexr B B *
3 elicc1 A * B * C A B C * A C C B
4 1 2 3 syl2an A B C A B C * A C C B
5 mnfxr −∞ *
6 5 a1i A B C * A C C B −∞ *
7 1 ad2antrr A B C * A C C B A *
8 simpr1 A B C * A C C B C *
9 mnflt A −∞ < A
10 9 ad2antrr A B C * A C C B −∞ < A
11 simpr2 A B C * A C C B A C
12 6 7 8 10 11 xrltletrd A B C * A C C B −∞ < C
13 2 ad2antlr A B C * A C C B B *
14 pnfxr +∞ *
15 14 a1i A B C * A C C B +∞ *
16 simpr3 A B C * A C C B C B
17 ltpnf B B < +∞
18 17 ad2antlr A B C * A C C B B < +∞
19 8 13 15 16 18 xrlelttrd A B C * A C C B C < +∞
20 xrrebnd C * C −∞ < C C < +∞
21 8 20 syl A B C * A C C B C −∞ < C C < +∞
22 12 19 21 mpbir2and A B C * A C C B C
23 22 11 16 3jca A B C * A C C B C A C C B
24 23 ex A B C * A C C B C A C C B
25 rexr C C *
26 25 3anim1i C A C C B C * A C C B
27 24 26 impbid1 A B C * A C C B C A C C B
28 4 27 bitrd A B C A B C A C C B