Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | xrrebnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnflt | |
|
2 | ltpnf | |
|
3 | 1 2 | jca | |
4 | nltpnft | |
|
5 | ngtmnft | |
|
6 | 4 5 | orbi12d | |
7 | ianor | |
|
8 | orcom | |
|
9 | 7 8 | bitr2i | |
10 | 6 9 | bitrdi | |
11 | 10 | con2bid | |
12 | elxr | |
|
13 | 3orass | |
|
14 | orcom | |
|
15 | 13 14 | bitri | |
16 | 12 15 | sylbb | |
17 | 16 | ord | |
18 | 11 17 | sylbid | |
19 | 3 18 | impbid2 | |