Metamath Proof Explorer


Theorem xrrebnd

Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006)

Ref Expression
Assertion xrrebnd A*A−∞<AA<+∞

Proof

Step Hyp Ref Expression
1 mnflt A−∞<A
2 ltpnf AA<+∞
3 1 2 jca A−∞<AA<+∞
4 nltpnft A*A=+∞¬A<+∞
5 ngtmnft A*A=−∞¬−∞<A
6 4 5 orbi12d A*A=+∞A=−∞¬A<+∞¬−∞<A
7 ianor ¬−∞<AA<+∞¬−∞<A¬A<+∞
8 orcom ¬−∞<A¬A<+∞¬A<+∞¬−∞<A
9 7 8 bitr2i ¬A<+∞¬−∞<A¬−∞<AA<+∞
10 6 9 bitrdi A*A=+∞A=−∞¬−∞<AA<+∞
11 10 con2bid A*−∞<AA<+∞¬A=+∞A=−∞
12 elxr A*AA=+∞A=−∞
13 3orass AA=+∞A=−∞AA=+∞A=−∞
14 orcom AA=+∞A=−∞A=+∞A=−∞A
15 13 14 bitri AA=+∞A=−∞A=+∞A=−∞A
16 12 15 sylbb A*A=+∞A=−∞A
17 16 ord A*¬A=+∞A=−∞A
18 11 17 sylbid A*−∞<AA<+∞A
19 3 18 impbid2 A*A−∞<AA<+∞