Metamath Proof Explorer


Theorem elxr

Description: Membership in the set of extended reals. (Contributed by NM, 14-Oct-2005)

Ref Expression
Assertion elxr A*AA=+∞A=−∞

Proof

Step Hyp Ref Expression
1 df-xr *=+∞−∞
2 1 eleq2i A*A+∞−∞
3 elun A+∞−∞AA+∞−∞
4 pnfex +∞V
5 mnfxr −∞*
6 5 elexi −∞V
7 4 6 elpr2 A+∞−∞A=+∞A=−∞
8 7 orbi2i AA+∞−∞AA=+∞A=−∞
9 3orass AA=+∞A=−∞AA=+∞A=−∞
10 8 9 bitr4i AA+∞−∞AA=+∞A=−∞
11 2 3 10 3bitri A*AA=+∞A=−∞